

What are the consequences of woody

plant encroachment?

- . Rangeland productivity
- 2. Ecosystem services
- 3. Energy and mass exchange
- 4. Scaling from local to global biogeochemical cycles

Taking the pulse of an ecosystem

Water

Energy

Carbon dioxide

How does woody plant encroachment affect the "pulse" of an ecosystem?

Current focus

Understand how interannual and intra-annual variations on precipitation affects CO₂ exchange in a mesquite-encroached grassland

- I. Precipitation
- 2. Vegetation status
- 3. CO₂ exchange

Methodology

Precipitation

	2004	2005	2006	2007	1936-2006
Winter (Dec Mar.)	59	61	35	65	98 (57)
Monsoon (Jul Sep.)	153	243	229	221	203 (70)
Annual Precipitation	285	335	289	330	377 (92)

Vegetation

Is this redistribution ecologically significant?

Spring and late summer growth supported by tap roots

NEE

NEE =R - GEP

Where did we come from? Where are we headed?

- 2004-2007 may be a preview of things to come
- As annual drought severity 1, NEE 1
- Spring drought led to no changes in spring R and enhanced summer R
- Summer drought increased net CO₂ loss by decreasing amount of late season growth

